Digital Collections

Oral history interview with Ronald D. Macfarlane

  • 2011-May-26

Oral history interview with Ronald D. Macfarlane

  • 2011-May-26

Ronald Macfarlane was born in Buffalo, New York, the oldest of three children. An excellent teacher in high school sparked his interest in chemistry, and Macfarlane attended the University of Buffalo, majoring in analytical chemistry. He found coursework rather boring, but relished exciting summer jobs in chemical industries. Nuclear chemistry was just getting started, and Macfarlane entered Carnegie Institute of Technology for a PhD. In Truman Kohman’s lab, he researched natural radioactivity. He made a kind of giant Geiger counter, which he published to international praise. Next, he accepted a postdoctoral position at Lawrence Berkeley National Laboratory, working on alpha activity in rare earth elements. After accidentally creating a more efficient way to get ionized particles; he discovered new isotopes for years, saving his discoveries for later publication.

Macfarlane accepted a job at McMaster University. There, he named his accidental creation the “helium jet recoil method” and began publishing data he’d stored up. He visited the Soviet Union, where he met John McIntyre, a physics professor at Texas A&M University. Months later, Arthur Martell, chairman of the new chemistry department at Texas A&M, called to recruit Macfarlane, and he took up a full professorship there. The Atomic Energy Commission funded Macfarlane’s nuclear work for a while but ceased after an incidental discovery during one of his nuclear chemistry experiments led to what became known as 252californium plasma desorption mass spectrometry. Macfarlane left the nuclear chemistry field to concentrate on mass spectrometry. He spent fifteen years developing the method that was the first to characterize the mass of large, fragile biomolecules—a method that quickly became well known and widely used to characterize a wide spectrum of biomolecules especially in the pharmacy and medicine fields. Early in the course of the discovery, he obtained National Institutes of Health funding to develop and expand the methodology. As one discovery led to another, his focus drilled down to another new field involving characterization of unusual lipids. He believed in “letting nature tell [a person] what is going on;” this approach has led to his interest in trying to determine who has cardiovascular disease and which components of his or her lipid profile contribute to the disease. One of the most important discoveries involved the characterization of an atherogenic type of the good cholesterol associated with APOC-1 (apolipoprotein C1), using both mass spectrometry and some of the novel platforms his lab developed to characterize lipoproteins.

At the time of this interview, Macfarlane, age seventy-eight, was still unready to retire. Having thrown out the textbook in favor of his own “commentaries,” he continued to teach analytical chemistry his way, incorporating constructivism, conceptual learning, and other elements of educational psychology. Using blood samples from actual patients Macfarlane continued his work on cardiovascular disease. He believes that a person should contribute to the betterment of society, which he thinks he has done. His work, which has received nearly continuous funding, has straddled the boundary between applied and pure science, and he has always wished he could return to “real science.” Macfarlane concludes the interview by saying that his colleagues over the years have been supportive and gracious; most of his collaborations have worked equitably; he has tried to mentor his students while fostering their own creativity. Macfarlane’s advice to young scientists is to listen to nature and to pay attention to small details.

Property Value
Place of interview
  • 106 pages
Rights Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Rights holder
  • Science History Institute
Credit line
  • Courtesy of Science History Institute

About the Interviewer

Michael A. Grayson is a member of the Mass Spectrometry Research Resource at Washington University in St. Louis. He received his BS degree in physics from St. Louis University in 1963 and his MS in physics from the University of Missouri at Rolla in 1965. He is the author of over 45 papers in the scientific literature. Before joining the Research Resource, he was a staff scientist at McDonnell Douglas Research Laboratory. While completing his undergraduate and graduate education, he worked at Monsanto Company in St. Louis, where he learned the art and science of mass spectrometry. Grayson is a member of the American Society for Mass Spectrometry (ASMS), and has served many different positions within that organization. He has served on the Board of Trustees of CHF and is currently a member of CHF's Heritage Council. He currently pursues his interest in the history of mass spectrometry by recording oral histories, assisting in the collection of papers, and researching the early history of the field.

Institutional location

Oral history number 0877

Related Items

Interviewee biographical information

  • February 21, 1933
  • Buffalo, New York, United States


Year Institution Degree Discipline
1954 University of Buffalo BA Chemistry
1957 Carnegie Institute of Technology MS Chemistry
1959 Carnegie Institute of Technology PhD Chemistry

Professional Experience

Lawrence Berkeley National Laboratory

  • 1959 to 1962 Postdoctoral Fellow

McMaster University

  • 1962 to 1965 Assistant Professor of Chemistry
  • 1965 to 1967 Associate Professor of Chemistry

Texas A & M University

  • 1967 to 2008 Professor of Chemistry
  • 2008 to 2019 University Distinguished Professor of Chemistry


Year(s) Award
1969 J. Simon Guggenheim Fellow, Niels Bohr Institute, Copenhagen
1974 Visiting Faculty, Center for Nuclear Research, Strasbourg, France
1974 Visiting Faculty, Phillips University, Marburg, Germany
1981 Visiting Faculty, University of Uppsala, Sweden
1982 University of Paris, Orsay, France
1984 Texas A&M Faculty Distinguished Achievement Award for Research
1989 American Chemical Society Award in Nuclear Chemistry
1991 American Society for Mass Spectrometry Distinguished Achievement Award (Inaugural Award)

Cite as

See our FAQ page to learn how to cite an oral history.

PDF — 1.2 MB

The published version of the transcript may diverge from the interview audio due to edits to the transcript made by staff of the Center for Oral History, often at the request of the interviewee, during the transcript review process.

Complete Interview Audio File Web-quality download

2 Separate Interview Segments Archival-quality downloads